Obstructions to Homotopy Invariance in Parametrized Fixed Point Theory

نویسنده

  • Ross Geoghegan
چکیده

In “zero-parameter” or classical Nielsen fixed point theory one studies Fix(f) := {x ∈ X | f(x) = x} where f : X → X is a map. In case X is an oriented compact manifold and f is transverse to the identity map, idX , Fix(f) is a finite set each of whose elements carries a natural sign, ±1, the index of that fixed point. The set Fix(f) is partitioned into Nielsen classes. Adding the indices within a given Nielsen class yields the fixed point index of that class. The number of classes with nonzero fixed point index is called the Nielsen number of f . One-parameter fixed point theory is the study of the fixed point set, Fix(F ) := {(x, t) ∈ X × I | F (x, t) = x}, of a homotopy F : X × I → X. In the case where X is an oriented compact manifold and F is transverse to the projection map p : X × I → X, Fix(X) consists of naturally oriented circles in the interior of X × I and naturally oriented arcs whose endpoints lie in X ×{0, 1}. We give a summary of one-parameter fixed point theory, in analogy to the classical theory, as developed by the first two authors. While classical fixed point theory is a “homotopy invariant” theory, homotopy invariance in the one-parameter theory is obstructed by “torsion” type invariants. We discuss this phenomenon and give some new examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 11 65 6 v 1 [ m at h . A T ] 3 0 N ov 2 00 4 Parametrized Homotopy Theory

Part I: We set the stage for our homotopical work with preliminary chapters on the point-set topology necessary to parametrized homotopy theory, the base change and other functors that appear in over and under categories, and generalizations of several classical results about equivariant bundles and fibrations to the context of proper actions of non-compact Lie groups. Part II: Despite its long...

متن کامل

Parametrized Homotopy Theory

We develop rigorous foundations for parametrized homotopy theory. After preliminaries on point-set topology, base change functors, and proper actions of non-compact Lie groups, we develop the homotopy theory of equivariant ex-spaces (spaces over and under a given space) and of equivariant parametrized spectra. We emphasize several issues of independent interest and include a good deal of new ma...

متن کامل

Fixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result

In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.

متن کامل

A Möbius Inversion Formula for Generalized Lefschetz Numbers

Let G be a finite group and f : U ⊂ M → M a compactly fixed G-equivariant self-map of a G-manifold M ; the aim of the paper is to give an answer to the following question: if for every subgroup H ⊂ G the restricted map f : U →M can be deformed (non-equivariantly and via a compactly fixed homotopy) to be fixed point free, is it true that f can be deformed (via a compactly fixed homotopy) equivar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005